Interrupts are central to operating systems as they allow the operating system to deal with the unexpected activities of running programs and the world outside the computer.
Interrupt-based programming is one of the most basic forms of time-sharing, being directly supported by most CPUs. Interrupts provide a computer with a way of automatically running specific code in response to events. Even very basic computers support hardware interrupts, and allow the programmer to specify code which may be run when that event takes place.
When an interrupt is received, the computer's hardware automatically suspends whatever program is currently running by pushing the current state on a stack, and its registers and program counter are also saved. This is analogous to placing a bookmark in a book when someone is interrupted by a phone call. This task requires no operating system as such, but only that the interrupt be configured at an earlier time.
In modern operating systems, interrupts are handled by the operating system's kernel. Interrupts may come from either the computer's hardware, or from the running program. When a hardware device triggers an interrupt, the operating system's kernel decides how to deal with this event, generally by running some processing code, or ignoring it. The processing of hardware interrupts is a task that is usually delegated to software called device drivers, which may be either part of the operating system's kernel, part of another program, or both. Device drivers may then relay information to a running program by various means.
A program may also trigger an interrupt to the operating system, which are very similar in function. If a program wishes to access hardware for example, it may interrupt the operating system's kernel, which causes control to be passed back to the kernel. The kernel may then process the request which may contain instructions to be passed onto hardware, or to a device driver. When a program wishes to allocate more memory, launch or communicate with another program, or signal that it no longer needs the CPU, it does so through interrupts.
Interrupt-based programming is one of the most basic forms of time-sharing, being directly supported by most CPUs. Interrupts provide a computer with a way of automatically running specific code in response to events. Even very basic computers support hardware interrupts, and allow the programmer to specify code which may be run when that event takes place.
When an interrupt is received, the computer's hardware automatically suspends whatever program is currently running by pushing the current state on a stack, and its registers and program counter are also saved. This is analogous to placing a bookmark in a book when someone is interrupted by a phone call. This task requires no operating system as such, but only that the interrupt be configured at an earlier time.
In modern operating systems, interrupts are handled by the operating system's kernel. Interrupts may come from either the computer's hardware, or from the running program. When a hardware device triggers an interrupt, the operating system's kernel decides how to deal with this event, generally by running some processing code, or ignoring it. The processing of hardware interrupts is a task that is usually delegated to software called device drivers, which may be either part of the operating system's kernel, part of another program, or both. Device drivers may then relay information to a running program by various means.
A program may also trigger an interrupt to the operating system, which are very similar in function. If a program wishes to access hardware for example, it may interrupt the operating system's kernel, which causes control to be passed back to the kernel. The kernel may then process the request which may contain instructions to be passed onto hardware, or to a device driver. When a program wishes to allocate more memory, launch or communicate with another program, or signal that it no longer needs the CPU, it does so through interrupts.