Monday, August 25, 2008

Interrupts

Interrupts are central to operating systems as they allow the operating system to deal with the unexpected activities of running programs and the world outside the computer.

Interrupt-based programming is one of the most basic forms of time-sharing, being directly supported by most CPUs. Interrupts provide a computer with a way of automatically running specific code in response to events. Even very basic computers support hardware interrupts, and allow the programmer to specify code which may be run when that event takes place.
When an interrupt is received, the computer's hardware automatically suspends whatever program is currently running by pushing the current state on a stack, and its registers and program counter are also saved. This is analogous to placing a bookmark in a book when someone is interrupted by a phone call. This task requires no operating system as such, but only that the interrupt be configured at an earlier time.

In modern operating systems, interrupts are handled by the operating system's kernel. Interrupts may come from either the computer's hardware, or from the running program. When a hardware device triggers an interrupt, the operating system's kernel decides how to deal with this event, generally by running some processing code, or ignoring it. The processing of hardware interrupts is a task that is usually delegated to software called device drivers, which may be either part of the operating system's kernel, part of another program, or both. Device drivers may then relay information to a running program by various means.

A program may also trigger an interrupt to the operating system, which are very similar in function. If a program wishes to access hardware for example, it may interrupt the operating system's kernel, which causes control to be passed back to the kernel. The kernel may then process the request which may contain instructions to be passed onto hardware, or to a device driver. When a program wishes to allocate more memory, launch or communicate with another program, or signal that it no longer needs the CPU, it does so through interrupts.

Tuesday, August 19, 2008

Ecophysiology of plants

Plant ecophysiology is an experimental science that seeks to describe the physiological mechanisms underlying ecological observations. In other words, ecophysiologists, or physiological ecologists, address ecological questions about the controls over the growth, reproduction, survival, abundance, and geographical distribution of plants, as these processes are affected by interactions between plants with their physical, chemical, and biotic environment. These ecophysiological patterns and mechanisms can help us understand the functional significance of specific plant traits and their evolutionary heritage. The questions addressed by ecophysiologists are derived from a higher level of integration, i.e. from “ecology” in its broadest sense, including questions originating from agriculture, horticulture, forestry, and environmental sciences. However, the ecophysiological explanations often require mechanistic understanding at a lower level of integration (physiology, biochemistry, biophysics, molecular biology). It is, therefore, quintessential for an ecophysiologist to have an appreciation of both ecological questions and biophysical, biochemical, and molecular methods and processes. In addition, many societal issues, often pertaining to agriculture, environmental change, or nature conservation, benefit from an ecophysiological perspective. A modern ecophysiologist thus requires a good understanding of both the molecular aspects of plant processes and the functioning of the intact plant in its environmental context.

In many cases, animals are able to escape unfavourable and changing environmental factors such as heat, cold, drought, or floods, while generally plants are unable to move away and therefor must endure the adverse conditions or perish. Some plants have an impressive array of genes which aid in adapting to changing conditions. It is hypothesized that this large number of genes can be partly explained by plant species' need to adapt to a wider range of conditions.

Sunday, August 10, 2008

JPEG file format

In computing, JPEG (pronounced JAY-peg) is a commonly used method of compression for photographic images. The degree of compression can be adjusted, allowing a selectable tradeoff between storage size and image quality. JPEG typically achieves 10 to 1 compression with little perceivable loss in image quality.

In addition to being a compression method, JPEG is often considered to be a file format. JPEG/Exif is the most common image format used by digital cameras and other photographic image capture devices; along with JPEG/JFIF, it is the most common format for storing and transmitting photographic images on the World Wide Web. These format variations are often not distinguished, and are simply called JPEG.

The compression method is usually lossy compression, meaning that some visual quality is lost in the process and cannot be restored. There are variations on the standard baseline JPEG that are lossless, however these are not yet widely supported.

Monday, August 04, 2008

Movement of proteins

Each type of protein is usually sent to a particular part of the cell. An important part of cell biology is the investigation of molecular mechanisms by which proteins are moved to different places inside cells or secreted from cells.

Most proteins are synthesized by ribosomes in the cytoplasm. This process is also known as protein biosynthesis or simply protein translation. Some proteins, such as those to be incorporated in membranes (known as membrane proteins), are transported into the endoplasmic reticulum (ER) during synthesis. This process can be followed by transportation and processing in the Golgi apparatus. From the Golgi, membrane proteins can move to the plasma membrane, to other subcellular compartments, or they can be secreted from the cell. The ER and Golgi can be thought of as the "membrane protein synthesis compartment" and the "membrane protein processing compartment", respectively. There is a semi-constant flux of proteins through these compartments. ER and Golgi-resident proteins associate with other proteins but remain in their respective compartments. Other proteins "flow" through the ER and Golgi to the plasma membrane. Motor proteins transport membrane protein-containing vesicles along cytoskeletal tracks to distant parts of cells such as axon terminals.

Some proteins that are made in the cytoplasm contain structural features that target them for transport into mitochondria or the nucleus. Some mitochondrial proteins are made inside mitochondria and are coded for by mitochondrial DNA. In plants, chloroplasts also make some cell proteins.

Extracellular and cell surface proteins destined to be degraded can move back into intracellular compartments upon being incorporated into endocytosed vesicles. Some of these vesicles fuse with lysosomes where the proteins are broken down to their individual amino acids. The degradation of some membrane proteins begins while still at the cell surface when they are cleaved by secretases. Proteins that function in the cytoplasm are often degraded by proteasomes.